Konec doby fosilní: Pět alternativ k vytápění plynem

zveřejněno 29.07.2024

Věděli jste, že české teplárenství - tedy výroba tepla a teplé vody pro domácnosti a podniky - je stále ještě z poloviny závislé na spalování uhlí? V České republice vedle sebe existuje přibližně 550 malých a 100 velkých sítí dálkového vytápění o celkové délce asi 7500 km. K této masivní infrastruktuře je připojeno 1,7 milionu domácností, tedy přibližně 4 miliony obyvatel. Využití uhlí pro výrobu tepla má podle prohlášení současné vládní koalice do roku 2033 skončit a teplárenské společnosti tak mají již jen pár let na to, aby uhlí nahradily.

Nejčastěji bývá jako náhrada uhlí zmiňován fosilní plyn, ten však z celé řady důvodů není řešením.

Jaké tedy máme alternativy? Přinášíme pět příkladů inovativních technologií, do kterých již investují v sousedních zemích, a které by mohly pomoci s udržitelnou a účinnou náhradou fosilních paliv také českému teplárenství.

 

#1 Průmyslová tepelná čerpadla: škálovatelné řešení s obrovským potenciálem

Průmyslová tepelná čerpadla jsou podobná těm, která už celkem běžně vídáme na vesnicích i ve městech, rozdíl je hlavně ve velikosti a výkonu. Domácí tepelná čerpadla mají vyšší účinnost, než kotle na fosilní paliva, což snižuje spotřebu elektřiny a provozní náklady. Jsou navíc velmi univerzální, lze je škálovat na různé velikosti a mohou využívat různé obnovitelné zdroje tepla - například geotermální energii, solární teplo, teplo z okolí, odpadní teplo z průmyslu a přebytečné teplo z měst, které mohou poskytovat například čističky odpadních vod, metro, či datová centra. Tepelná čerpadla jsou také jedinečná v tom, že je lze v kombinaci se zásobníky využít i pro dálkové chlazení. Takto jsou dnes využívána třeba v Paříži [1]. Ačkoli jejich využití není zatím příliš rozšířené, potenciál růstu je značný. To ostatně ukazuje i studie [2], kterou si nechalo vypracovat Teplárenské sdružení České republiky.

Do roku 2040 by velká tepelná čerpadla mohla zajistit až 35 % dodávek tepla do českých domácností.

Velké tepelné čerpadlo je k vidění například u našich jižních sousedů, a to ve vídeňské čtvrti Simmering. Zajišťuje teplo pro 56 000 domácností a provozuje jej veřejná společnost WienEnergie, která do první fáze projektu investovala 70 milionů eur. Do roku 2027 by se tepelný výkon čerpadla měl zdvojnásobit až na 110 MW. Stane se tak největším systémem tepelných čerpadel na světě. Systém využívá odpadní vodu z nedaleké čistírny odpadních vod Ebswien. Tepelné čerpadlo je schopno vyrobit vodu o teplotě přibližně 90°C a navíc snižuje teplotu vody, kterou čistička vypouští do Dunaje, čímž zmírňuje její dopad na řeku.

V Česku máme zatím jediné velké tepelné čerpadlo, a to v Děčíně. Spuštěno bylo v roce 2002 a jako zdroj využívá obrovské podzemní jezero, z něhož vytéká na povrch voda o teplotě 30°C přirozeným přetlakem. Tato voda je po ochlazení na 10°C a další jednoduché úpravě dodávána do vodovodního řádu. Děčínské tepelné čerpadlo je bohužel stále poháněno elektřinou z plynového zdroje, který slouží také pro výrobu tepla v případě, kdy čerpadlo samo není schopno pokrýt celou spotřebu.

 

#2 Geotermální energie: využití přirozeného zemského tepla k vytápění

Existují dvě obvyklé formy geotermální energie - hlubinná a mělká. Hlubinnou geotermální energií se zpravidla rozumí to, když je vrt v hloubce větší než 2 km pod zemí.

Mělká geotermální energie využívá vrtů o hloubce 1,5 až 100 m. K vytápění a chlazení objektů se v těchto případech používá tepelné čerpadlo typu země-voda. Její výhodou jsou nižší počáteční náklady, protože průzkumné práce nejsou tak rozsáhlé.Využití v rámci systémů centrálního zásobování teplem je nicméně omezené.

Hlubinná geotermie je sice technologicky náročnější, ale přináší významné výhody. Nevyžaduje například použití dalšího tepelného čerpadla. Nemrznoucí směs vody se ohřívá při průchodu uzavřeným systémem potrubí v hlubinném vrtu a následně může být přímo využita pro výrobu tepla a elektřiny. Vysokoteplotní systémy centrálního zásobování teplem, které jsou v současné době připojeny na zdroj spalující fosilní paliva, mohou za dostatečně vysoké teploty přímo přejít na zdroj hlubokých geotermálních vod, bez nutnosti provádět rozsáhlé rekonstrukce.

Průzkum geotermálních zdrojů však může být velmi nákladný a časově náročný proces s nejistým výsledkem. Navíc se při něm může v závislosti na konkrétních geologických podmínkách uvolňovat metan a jiné plyny. Při rozvoji geotermální energie bychom tak měli myslet také na vývoj vhodných technologií k zachytávání těchto plynů.

Jeden z největších geotermálních systémů dálkového vytápění v Evropě se nachází v Mnichově. Mnichovské veřejné služby Stadtwerke München, které dodávají elektřinu více než 95% mnichovských domácností, mají šest geotermálních vrtů po celém městě a sedmý má být uveden do provozu ještě letos. Hloubka vrtů se pohybuje od 2 000 do 3 000 metrů a poskytuje teplotu až 120°C. Mnichov plánuje do roku 2040 pokrýt celou základní zátěž dálkového vytápění obnovitelnými zdroji. Jeden z geotermálních vrtů se dokonce nachází v místě konání slavného Oktoberfestu, z čehož je zřejmá další výhoda hlubinné geotermální energie - požadavky na infrastrukturu na povrchu jsou minimální.

 

#3 Solární energie: teplo ze Slunce můžeme snadno skladovat

Solární termální systémy jsou podobné těm fotovoltaickým, které dobře známe z českých střech i polí. Místo elektřiny ale vyrábí teplo. Obvykle se skládají ze solárního pole a zásobníku tepla, který může mít podobu nadzemní nebo podzemní nádrže s vodou. Teplo je ale možné ukládat i do jiných materiálů, například do roztavených solí nebo horniny. Teplo, které je takto uchováno v zásobníku, pak může být využito v systémech dálkového vytápění pro výrobu tepla a teplé vody i v době, kdy slunce nesvítí.

Výroba solární tepelné energie je navíc obvykle účinnější než fotovoltaika, protože teplo se ukládá snáze než elektřina.

Groningen je v Nizozemsku na špičce v oblasti solární tepelné energie a staví se zde čtvrtý největší solární tepelný park na světě. Jeho cílem je zásobovat teplem 25 % města, tedy přibližně 10 000 připojených domácností, a bude celoročně vyrábět teplo o teplotě 69 až 93°C. Očekává se, že kombinací kolektorového pole a akumulační nádrže bude vyrobeno 25 GWh. Jedná se o 48 000 m2 solárních termických desek na ploše 12 hektarů a akumulační nádrž je pod zemí sahající až do hloubky 175 metrů.

 

#4 Odpadní teplo: využívejme zbytečně ztracenou energii

Další možností k zajištění tepla pro systémy dálkového vytápění je využití přebytečného odpadního tepla z průmyslových procesů, komerčních budov a dalších zdrojů. Zpětné získávání tohoto jinak ztraceného tepla je velmi efektivním řešením.

Mezi možné zdroje přebytečného tepla patří datová centra, čistírny odpadních vod, zpracování čistírenských kalů, systémy metra a výroba chladu v obchodech s potravinami, nemocnicích nebo hotelech.

Zda se jedná o efektivní řešení výroby tepla a teplé vody určuje především vzdálenost těchto zdrojů od již existující infrastruktury pro dálkové vytápění, jako je například rúzné potrubní vedení či výměníky.

Ve švédském Stockholmu je 20 městských datových center napojeno na systém dálkového vytápění a přebytečné teplo dodávají do sítě, čímž ročně získají 100 GWh. Tím se vyrobí dostatek tepla pro vytápění přibližně 30 000 domácností. Cílem města je využít přebytečné teplo z datových center k vytápění 10 % města, s čímž by mohl pomoci také jejich další růst. Datová centra dostávají za dodávku tepla do systému zaplaceno a využívají nižší daň z elektřiny od švédského státu, což obojí představuje silnou motivaci pro budoucí zařízení tohoto typu. Jedná se o jeden z největších a nejambicióznějších projektů na využití tepla z datových center na světě.

 

#5 Skladování tepla: jak si schovat teplo na zimu

Velmi důležitou součástí mnoha řešení dálkového vytápění z obnovitelných zdrojů je skladování, neboli akumulace tepla. Akumulace pomáhá ukládat teplo v době přebytku výroby, aby mohlo být využito později, když je poptávka vyšší než výroba. To velmi dobře doplňuje technologie jako je solární termální energie, nebo případy, kdy vzniká přebytek elektřiny vyrobené z obnovitelných zdrojů, který lze přeměnit na teplo. Díky tomu také skladování tepla velmi pružně reaguje na proměnlivost výroby elektřiny z obnovitelných zdrojů, což zlepšuje jeho finanční životaschopnost. Skladování tepla je specifické pro danou lokalitu, takže jedno řešení nebude fungovat pro všechny scénáře. Nejběžnějšími formami skladování jsou podzemní vodní nádrže, kryté šachtové tepelné systémy, podzemní vrty nebo podzemní akumulace ve vodonosných vrstvách.

Nedaleko od nás, v Berlíně, mají zásobárnu tepla v 45 metrů vysoké ocelové nádrži, která je největší svého druhu v Evropě. Hovorově se jí říká “berlínský kotel”, má kapacitu 200 MW a pojme 56 milionů litrů vody o teplotě 98 stupňů Celsia.
To znamená, že v létě dokáže pokrýt většinu potřeby teplé vody ve městě. Teplo se vyrábí z přebytků větrné energie s možností integrace tepla z dalších zdrojů odpadního tepla, jako je například místní čistírna odpadních vod. Zařízení stálo 50 milionů EUR.

 

Závěrem

Transformace teplárenství na obnovitelné zdroje musí jít ruku v ruce také s dalšími opatřeními. Snižování tepelných ztrát na straně výroby a distribuce tepla (tedy například lepší izolace potrubního vedení) a zároveň snižování energetické náročnosti budov (zateplování, výměna oken atd.) jsou dva základní předpoklady pro to, aby bylo možné v soustavách nahradit parovody hopspodárnějšími horkovody nebo teplovody.

Výše uvedené příklady moderních teplárenských technologií je samozřejmě možné a nanejvýš žádoucí také různě kombinovat. Inspirací nám může být slovenské město Partizánske, které se nachází v regionu pod Spravedlivou transformací. Díky aktivitě nevládní organizace Pratelia Zeme - CEPA a osvícenému vedení obce zase již od roku 2022 pečlivě plánují komplexní transformaci sítě dálkového vytápění. V Partizánskem se nyní prověřuje možnost využití geotermálních vrtů, které mají doplnit tepelná čerpadla a kotle na biomasu.

V České republice se bohužel zatím cestou inovativních technologií příliš nevydáváme - evropské finance využívají z velké části projekty zaměřené na přechod z uhlí na plyn, případně na energetické využití odpadu či výjimečně využití biomasy, které je však rovněž problematické z hlediska udržitelnosti a dopadů na životní prostředí. Pozitivní zprávou je v tomto ohledu přepracovaný dotační program HEAT, v němž je z Modernizačního fondu k dispozici až 20 miliard korun na ekologizaci teplárenských provozů, a který zvýhodňuje inovativní projekty s využitím tepelných čerpadel nebo geotermální energie.

Konec využívání uhlí pro výrobu tepla je jedinečnou příležitostí investovat do systémových změn a inovativních technologií, které mohou přinést šetrnější a také levnější vytápění s využitím zdrojů, které již nyní máme k dispozici. K tomu je ale potřeba opustit zastaralé lpění na plynu jako zdánlivě jednoduché, ale dlouhodobě neudržitelné náhradě za uhlí, inspirovat se fungujícími příklady a odvážně se vydat vstříc vytápění odpovídajícímu výzvám našeho století.

 

Zdroje

1 Energy Learning Journal. Energy Storage: The Parisian District Cooling System. 2024. https://www.renewableinstitute.org/energy-storage-the-parisian-district-cooling-system/ 
2 Teplárenské sdružení ČR. Až třetinu dálkového vytápění by mohla v budoucnu dodávat velká tepelná čerpadla. 16.5. 2024. https://tscr.cz/az-tretinu-dalkoveho-tepla-by-mohla-v-budoucnu-dodavat-velka-tepelna-cerpadla/

 

Článek vyšel také na webu Ekolist.cz. 

Zaujal Vás tento článek?
Doporučte článek známým!

Hledaný výraz

[ zavřít ]